
Web-based Multi-Agent Medical and Control System

Moe Myint Myint, Dr. Soe Hay Mar

University of Computer Studies, Hpa-an

mss.moemyintmyint@gmail.com

Abstract

It is demonstrated as medical diagnosis

agents of medical centers located in different

areas. Agents are provided for users who want to

know a related syndrome (disease) according to the

users’ input symptoms by using forward chaining

method. Another approach is showed by using

backward chaining method to help users for

searching the doctors’ information that fix with

users’ related syndrome (disease). The agents can

be coordinate and cooperate with each other to

search the related syndrome and the doctor

information. As the expert knowledge required

building the medical diagnosis multi-agent system,

medical results are exploited. Examining the

reasons of failure for paying the doctor information

with the related syndrome, the system has realized

that necessary measures should be taken in order

to establish a semantic interoperability

environment to be able to communicate with other

medical diagnosis agents of other medical centers

that may be located in different areas. Due to the

nature of the problem which necessitates having

autonomous entities dealing with heterogeneous

distributed resources, the system has been built as

a multi-agent system. The agent creation

benchmark operates with basic Java Agent

Development Framework (JADE) agents using rule

based reasoning.

Keywords: Multi-agent, Rule Based Reasoning,

Forward Chaining, Backward Chaining.

1. Introduction

The system has been developed as rule-

based multi-agent system that provides medical

services to users through a remote terminal

connected to Internet (e.g. a portable PC, a PDA or

a mobile phone) [3]. Each agent contains

knowledge as rules that can predict the user’s

felling syndrome. When the user have been chosen

symptoms that described on the user interface, the

agent search the related syndrome using forward

chaining methods. If the agent cannot search the

syndrome that related with the user’s choosing

symptoms, it sends it’s symptoms to other agents to

search specific syndrome. Then it provides to

connect other medical centers and the user. Then

the system approaches to backward chaining

method. In backward chaining method, the agent

has been decided about what syndrome is occurred

in its user. The agent requests to the user to insert

the facts of the doctor that the user wants (e.g.

name, location, time). Then the agent searches the

doctor information that fix with the end-user

desires, the end-user syndrome and who is good for

paying treatment in the field of the end-user

syndrome (specialty) in its knowledge repository. If

the agent cannot search in its knowledge

repository, it connects to other medical diagnosis

agents to complete its goal (the doctor information

that is the user’s want).

The aim of this work was to develop a

framework capable of supporting the decision

making process in complex real-world domains,

such as environmental, industrial or medical

domains using a Multi-Agent approach with Rule-

Based Reasoning. Medical Multi-Agent Software

Systems are needed to reduce error in diagnosis

and treatments. In this concern, Medical Multi-

Agent System has been intending to develop JADE

for sharing information through the web to be used

in different medical centers’ agent. In this system,

Medical diagnosis multi-agent has been represented

JADE (Java Agent Development Framework), a

software framework to write the agent applications

in compliance with the FIPA specifications for

interoperable multi-agent systems [1].

2. Related Work

Intelligent Agents and Multi-agent

systems are one of the most important emerging

technologies in computer science today [5] [1]. The

advent of Intelligent Multi-Agent Systems has

brought together many disciplines in an effort to

build distributed, intelligent and robust applications

[7]. Intelligent Multi-Agent Systems have given us

a new way to look at distributed systems and

provided a path to more robust intelligent

applications [5].

3. Rule-Based Reasoning (RBR)

 Rule-Based Reasoning is an AI technique

which tries to emulate the human reasoning and

problem solving capabilities. They model how a

human expert analyzes a particular situation by

applying rules to the facts in order to reach a

conclusion. A RBR system represents information

and searches for patterns in that information. Fact

patterns are analyzed until either the goal succeeds

or all of the rules are processed and the goal fails.

A rule-based description of metabolism

can also be extremely fast and highly interactive.

Truth maintenance mechanisms, which

automatically deduce and retract conclusions when

the underlying fact base changes, make the

reasoning processes involved in rule-based

simulations more robust and efficient. There are

two main directions in Rule base reasoning:

Forward and Backward Chaining Algorithms. In

MAS, and an agent should be share the work

between forward and backward reasoning, limiting

forward reasoning to the generation of facts that

will be solved by backward chaining.

 The system can be decided syndrome by

matching the end-user symptoms as rules. In the

agent’s knowledge repository, knowledge is

represented as rules. There are many diseases

(syndromes) which have many symptoms or only

one symptom. The system defines symptoms that

can be occurred syndromes as rules. So, symptoms

can occur a little different or more different in

syndromes. The system searches in its knowledge

repository by matching rules using forward

changing and backward chaining.

E.g. Enteric Fever and Vital Infection is

the same in the symptom of fever is more than four

weeks and Toxic symptom. But Dry coated tongue

symptom, furred symptom, slow pulse rate

symptom and Epistaxis symptom can occur Enteric

Fever. Tachyardia symptom can occur Vital

Infection. The rule for Enteric Fever is fever is

more than four weeks symptom, Toxic symptom,

Dry coated tongue symptom, furred symptom, slow

pulse rate symptom and Epistaxis symptom. The

rule for Vial Infection is fever is more than four

weeks symptom, Toxic symptom and Tachycardia

symptom. But the end-user chooses only the

symptom of the fever is more than four weeks, the

system decide the end-user’s syndrome can be both

Enteric Fever and Vital Infection. The system’s

decision is depend on the end-user’s choosing

symptoms.

3.1 Forward-Chaining (FW)

 Forward Chaining is an example of the

general concept of data-driven reasoning that is,

reasoning in which the focus of the attention starts

with the known data. It can be used within an agent

to derive conclusion from incoming percepts, often

without a specific query in mind. New facts can be

added to the agenda to initiate new inferences. An

example of this is a medical diagnosis in which the

problem is to diagnose the underlying syndrome

based on a set of symptoms (the working memory).

A problem of this nature is solved using a forward-

chaining, data-driven, system that compares data in

the working memory against the conditions (IF

parts) of the rules and determines which rules to

fire [4].

 In this system, forward chaining method is

used when the system searching syndrome that is

related with the user’s choosing symptoms. In the

case of searching doctor, the end user’s criteria is

little or the end user’ criteria is not give to the

system. On the above condition, the system may

has many doctor information fix with the user’s

criteria or the user’s syndrome (the user’s criteria is

not involved and the system decide doctors’

information depend on the user’s syndrome). The

system is also used forward chaining. If the end

user’s wanted doctor is not exist in the user’s

requested agent, the system approaches to the

backward chaining method for firing rule and

completing the agents’ work.

3.1.1 Example for Forward-Chaining

(FW)

1. Data in working memory

User input = Choosing symptoms

(Data in knowledge-base If hills then

Malariae Malaria, Falciparum Malaria

If hills and rigor then Malariae Malaria,

Falciparum Malaria

If hills and rigor and on every fourth day

then Malariae Malaria)

If the system is no rule to fire, it approaches to

multi-agent technology for firing rule.

Trigger rule: Confirm for treatment

Conflict rule: rule Confirm for treatment (It is

inserted by the user).

Fire rule: Confirm for treatment

2. Data in working memory

User input = Choosing symptoms

Syndrome = Decided from the system (Malariae

Malaria)

Confirm treatment = yes

(Data in knowledge-base If syndrome =

Malariae Malaria and treatment = yes then

deciding doctor who can pay treatment to

the end-user syndrome)

Trigger rule: Deciding Doctor (the system can get

many doctors’ information that can pay treatment

to the end-user’s syndrome)

Conflict set: rule Deciding Doctor by asking the

end-user’s criteria

Fire rule: Deciding Doctor

 3. Data in working memory

User input = Choosing symptoms

Syndrome = Decided from the system (Malariae

Malaria)

Confirm treatment = yes

Deciding Doctor = Doctors’ information that fix

with the user’s criteria (e.g. Doctor’s name = U

Than Aye, location = Yangon hospital, start time

for paying treatment = 10 am, end time for paying

treatment = 3 pm, specialty = Malaria (specialty is

included as knowledge about Dr. U Than Aye is

good for paying treatment in Malaria))

(Data in knowledge-base If syndrome =

Malariae Malaria and treatment = yes and

Doctor’s name = U Than Aye and location

= Yangon hospital and start time for

paying treatment = 10 am and end time for

paying treatment = 3 pm and specialty =

Malaria then Finding Doctor)

If the system is no rule to fire, it approaches to

backward chaining method for firing rule.

Trigger rule: Finding Doctor

Conflict set: rule Finding Doctor

Fire rule: Finding Doctor

4. Data in working memory

Doctor = Decision making from the system

Action = reply to the user

Trigger rule: Notify to user

Not added to Conflict set

Fire rule: Finding Doctor

3.1 Backward-Chaining (BW)

In other problem, a goal is specified and the

AI must find a way to achieve that specified goal.

For example, if there is an epidemic of a certain

disease, this AI could presume a given individual

had the syndrome and attempt to determine if its

diagnosis is correct based on available information.

A backward chaining, a goal-driven, system

accomplishes this. To do this, the system looks for

the action in the THEN clause of the rules that

matches the specified goal. In the other words, it

looks for the rules that can produce this goal. If a

rule is found and fired, it takes each of that rule’s

conditions as goals and continues until either the

available data satisfies all of the goals or there are

no more rules that match [4].

In this system, backward chaining is started

in the following conditions. One, the doctor

information was already known by the end-user

(e.g. the end user give detail doctor information to

the system for searching). Two, the end user asked

the system about the end user’s doctor information

(the end user may give to the system about the

doctor name, the doctor location, the doctor time or

the doctor’s specialty). Three, the user’s wanted

doctor was not exist in the user’s requested agent.

The system use backward chaining method to find

the end-user wanted doctor on the above

conditions.

3.1.1 Example for Backward-Chaining

(BW)

Query: Doctor = U Than Aye (inserted by the user)

1. Working memory = empty

Goal stack: (Malaria (specialty already exist in the

system as knowledge), U Than Aye)

Antecedent: Treatment = yes

2. Working memory

Syndrome = Malaria (Decided from the system)

Treatment = yes

Antecedent: Finding Doctor = U Than Aye

(inserted by the user)

Finding Doctor = Doctors’ information that fix

with the user’s criteria (e.g. Doctor’s name = U

Than Aye, location = Yangon hospital, start time

for paying treatment = 10 am, end time for paying

treatment = 3 pm, specialty = Malaria (specialty is

included as knowledge about Dr. U Than Aye is

good for paying treatment in Malaria)

Goal stack: (Treatment, Finding Doctor

(cooperating and negotiating with other agents to

search the doctor information))

(Malaria, (name = U Than Aye, Location

= Yangon Hospital, start time = 10 am,

end time = 3pm, specialty = decided

syndrome)

3. Working memory

Syndrome = Malaria (Decided from the system)

Finding Doctor = Doctors’ information that fix

with the user’s criteria (e.g. Doctor’s name = U

Than Aye, location = Yangon hospital, start time

for paying treatment = 10 am, end time for paying

treatment = 3 pm, specialty = Malaria (specialty is

included as knowledge about Dr. U Than Aye is

good for paying treatment in Malaria)

Treatment = yes

Antecedent: Deciding Doctor = Doctor’s name = U

Than Aye, location = Yangon hospital, start time

for paying treatment = 10 am, end time for paying

treatment = 3 pm, specialty = Syndrome (Malaria)

This antecedent condition may be including other

doctors’ information that is closely related with the

end-user’s wants. (E.g. Dr. Hla Hla is good for

paying treatment in Malaria and exists in Yangon

hospital. Dr. Mya Mya is good for paying treatment

in Malaria but she stays in Mandalay. The system

records these doctors’ information with priority.

The system records firstly Dr. Hla Hla’s

information and then records Dr.Mya Mya

information.)

4. Working Memory

Syndrome = Malaria

Treatment = yes

Deciding Doctor = Doctor Information that fix with

the end-user’s criteria and records in the system

User Criteria = Fire and pop off the rule Find-

Doctor

User can get Doctor Information that already

record in the system.

4. Multi-Agent System (MAS)

An intelligent agent may be defined as a

computational process that can perform tasks

autonomously. It inhabits a complex and dynamic

environment with which it may interact to

accomplish a given set of goals [5]. A set of agents

that communicate among themselves to solve

problems by using cooperation, coordination and

negotiation techniques composes a multi-agent

system (MAS).

Multi-agent Systems (MAS) may be seen

as a new methodology in distributed problem-

solving via theorem proving, i.e. agent-based

computing has been hailed as a distributed problem

solving and/or a new revolution in software

development and analysis. Indeed, agents are the

focus of intense interest on many sub-fields of

Computer Science, being used in a wide variety of

applications, ranging from small systems to large,

open and complex. Agents are not only a very

promising technology, but are emerging as a new

way of thinking , a conceptual paradigm for

analyzing problems and for designing systems, for

dealing with complexity, distribution and

interactivity. It may even be seen as a new form of

computing and intelligence. Many approaches

consist of multiple agents [5].

5. Implementation of the Multi-Agent

System

Multi-agent systems offer an implementation

alternative that certainly fits user needs, because

they have the following interesting properties:

-Modularity: Agents can have medical knowledge

and many kinds of doctor information to pay

treatments with different property and predict

syndrome with related symptoms [5].

-Efficiency: The agent who is the user requested

provides not only no doctor to pay treatment but

also no knowledge of the syndrome for symptoms

which choose from the user. It coordinates with

other agents to find the doctor that fix the user’s

wants and the syndrome related with symptoms.

-Reliability: [5] A user can request to every agent.

So every agent can be sender to request to other

agents and they have their own knowledge to solve

the user’s health problem. When any agent is

failed, the user can work with their requested agent.

-Flexibility: Agents can perform user’s requirement

and which way user choose (to take treatment or

not). When the user requires taking treatment, the

agent can search with other negotiated agents to

satisfy the user’s wants. Otherwise, the agent can

eliminate its action [5].

-Existence of a standard: the FIPA (foundation for

Intelligent Physical Agents) is a non-profit

foundation based on Geneve (Switzerland). Its

main mission is to establish the rules that have to

govern the design and implementation of MAS in

order to achieve interoperability among systems

[5].

-Existence of development tools: JADE (Java

Agent Development Environment) is a

programming tool that contains a set of JAVA

libraries that facilitate the development of the

FIPA-compliant in the multi-agent system. A

JADE plug-in that provides certain security

mechanisms, called JADE, has been released [5].

5.1 Java Agent Development Environment

(JADE)

 JADE (Java Agent Development

Environment) is a software framework to make

easy the development of agent applications in

compliance with the FIPA specifications for

interoperable intelligent multi-agent systems.

JADE is an Open Source project, and the complete

system can be downloaded from JADE Home Page

[11]. The goal of JADE is to simplify development

while ensuring standard compliance through a

comprehensive set of system services and agents.

JADE (Java Agent Development

Framework) is a software framework to make easy

the development of multi-agent applications in

compliance with the FIPA specifications. JADE

can then be considered a middle-ware that

implements an efficient agent platform and

supports the development of multi agent systems.

JADE agent platform tries to keep high the

performance of a distributed agent system

implemented with the Java language. In particular,

its communication architecture tries to offer

flexible and efficient messaging, transparently

choosing the best transport available and

leveraging state-of-the-art distributed object

technology embedded within Java runtime

environment. JADE uses an agent model and Java

implementation that allow good runtime efficiency,

software reuse, agent mobility and the realization

of different agent architectures.

5.2 JADE Agents’ communication

JADE agents have communication

capabilities. The adopted paradigm is asynchronous

message passing. Each agent has a sort of mailbox

(the agent message queue). JADE posts into the

mailbox the messages sent by other agents.

Whenever a message is posted in the message

queue the receiving agent is notified. The

programmer decides when to get the message from

the message queue.

Messages exchanged by JADE agents

have a format specified by the FIPA ACL (Agent

Communication Language) Instances of the

jade.lang.acl.ACLMessage class.

 Figure 1: JADE Agent Communication

Architecture

6. System Design

There are three different medical centers

located in different areas. Each medical center has

its own agent. Each agent has been created in web

to pay medical services and doctor information to

the end user. Each agent has its own knowledge to

decide the user’s syndrome. They are negotiated

with each other not only when the user’s desired

doctor doesn’t exist in the user’s requested agent

but also when the syndrome according with the

related user’s choice symptoms doesn’t search in

the requested agent. When a user chooses one of

the agents, the user can work with its requested

agent until to complete its goal.

Figure 2: Table Design of the system in Oracle

Database

There are three tables in Oracle Database

table structure. The Symptom table includes

medical names of Symptoms and description of

these medical names. The Disease table includes

medical names of Diseases and description of these

medical names. The Doctor table includes NAME,

ADDRESS, PHONE, START-TIME, END-TIME,

SPECIALTY and SPECIAL-LIST ID. Firstly,

Agent one accepts the user’s symptoms. Then

agent one predicts the disease using Forward

chaining method but the related disease is not find

in its database or knowledge repository. Agent one

sends the user’s symptoms to agent two using EJB

and JADE techniques for completing the user’s

goals. Agent two searches the user’s related disease

and replies to agent one using EJB and JADE

techniques.

When doctor information is not find in

agent one, it sends syndrome to agent two to find

doctors’ information that pay a good treatment in

this disease (specialty). Agent two searches

doctors’ information using backward chaining

method in its database or knowledge repository.

When agent two finds doctors’ information, it

sends results to agent one using EJB and JADE

techniques.

The system is developed by using Java

language (EJB-3.0, JSF-1.2 and JADE-1.4) and

Oracle database that includes symptoms, related

diseases (syndrome) and doctors’ information to

treat the syndrome. In Business Logic tier, the

system developed on Web Logic Application

Server is handling the data inserting, deleting and

updating in the database using the enterprise java

bean (EJB). In presentation tier, the JSF backing

bean handle the request data from the user and

response to the user uses Java Server Faces (JSF).

When agent communication is started, java agent

development environment (JADE) can do agents’

communication.

Figure 3: System Flow Diagram

Figure 4: Sequence Diagram for Process

The system flow diagram refers to three

agents’ system flow. Each agent use forward

chaining flow to predict syndrome and use

backward chaining flow to search the user’s desired

doctor when the user’s desired doctor does not

exist in the users requested agent by negotiating

with each other.

7. Experimental Result

 This system successively starts 2000

agents (each agent started creates the next one) and

records the execution time and memory

consumption. The memory scale of the agent

creation benchmark displays the range of 0MB to

263736 KB. The amount of agents is sufficiently

large, thus memory is used due to the creation of

agents, each of which incorporates an own

knowledge base. Each agent uses memory between

5050 KB to 272356 KB. Agent who uses forward

chaining method consumes time age about 1500

MS and 2000 MS locally. If the agent asks the

other remote agents or other applications, it takes

between 3000 MS and 5000 MS. Agent search

using backward consume time about 16000 MS and

19000 MS locally but connection with other agents

use 29000 MS and 4000 MS. In practice, a long

time takes to use these agents can’t reduce their

performance for communication. More times to use

this system more quickly to connect and search.

8. Conclusion

This paper presented an integrated framework

for the rule-based medical multi-agent system by

using the combination of multi-agent system and

rule-based reasoning. The forward design and

backward design complement each other to form an

integrated design system. This thesis’s presentation

include establishing the combination of multi-agent

and rule-based reasoning for the prediction of the

end-user syndrome more correct than using only

multi-agent or rule-based reasoning , establishing

communication between agents provide user to get

the most suitable doctor information for the end-

user’s syndrome and to know the end-user about

possible related syndrome according to the end-

user inserted symptoms and introducing the

automated searching approach which is based on

the forward and backward design chain by

negotiating with other medical center agents. MAS

can work their own task to complete. The rule-

based MAS can work not only their own task to

complete but also build a domain- independent

framework for supporting decision-making in

complex real-world domains. This system shows to

extend a MAS tool capable of incorporating Rule-

based Reasoning.

9. References

[1] B. Chen, H.C. Harry and P. Joe, “Integrating mobile

agent technology with multi-agent systems for distributed

traffic detection and management systems”, Department

of Mechanical Engineering and Department of Electrical

& Computer Engineering, Michigan Technological

University, USA.

[2] Diplomarbeit, “Evaluation and Implementation of

Match Algorithms for Rule-based Multi-Agent Systems

using the Example of Jadex”, Master Thesis, Hamburg

University,01agun@informatik.uni-hamburg.de,

Studiengang Informatics, Matrikelnummer: 5318142,

Fachsemester 16.

[3] F.Pascal, D.D Sophine, M.F Jean, G.Jonathan,

“Performance Analysis of Multi-Behavior Agents for

Supply Chain Planning”, CIRRELT-2008-43,

Interuniversity Research Center on Enterprise Networks,

Logistics and Transportation.

[4] F.H Janes, “Methods of Rule-based System”, Rule

based system and Identification Trees, AI article writing

contest, http://ai-depot.com/contest.

[5] M.Antio, S.David, I.David, “Security measures in a

medical multi-agent system”, Research Group on AI,

Multi-Agent systems Group, Computer Science and

Mathematics Department, School of Electrical and

Computer Engineering, University of Rovirai Virgili.

[6] M.Antonio, “Medical application of Multi-Agent

Systems”, Computer Science & Mathematics

Department, University of Rovirai Virgili, Spain.

[7] N.K Kazuyoshi, Y.G daisuke, N.Y Fumiyo, T.H

Muneo, “The Medical Diagnosis Support System with

Intelligent Multi-agent Techniques by Performance

Differential Difference”, fifth International Workshop on

Computational Intelligence & Applications, Toin

University of Yokohama, email: nakano@intlab.toin.ac,

jp.2009.

[8] P.S Mamimdar, “Towards a formal theory of

communication for multi-agent system”, Austin TX

78712-1188, Department of computer science, university

of Taxas, USA, 1992.

[9] S.Najib, “Application of Backward Chaining Method

to Computer Forensic”, Communication of the IBIMA

Volume 6, Hofstra University, Hempstead New York,

najib.saylani@hofstra.edu, 2008.

[10] F. Bellifemine1, A. Poggi, G. Rimassa2, CSELT

S.p.A, G. R. Romoli, “Developing Multi-agent Systems

with JADE”, Dipartimento di Ingegneria

dell’Informazione, University of Parma, Parco Area delle

Scienze, Parma, Italy,

